We use cookies to understand how you use our site and to improve the overall user experience. This includes personalizing content and advertising. Read our Privacy Policy
As a leading service provider focused on drug development, BOC Sciences has been supporting customers at the forefront of drug conjugates. Virus-like nanoparticles show promising promise in targeted drug delivery. We provide virus-like drug conjugation services to meet your unique project needs. Our comprehensive VDC platform will provide quality services to assist our clients in drug development.
Find out more with Drug Conjugation Services.
Targeted delivery has long been most challenging for improving the treatment of diseases. Nanoparticles (NPs) as targeted delivery vehicles for therapeutic cargo have been examined. The virus-like particles (VLPs), the emerging technology for targeted therapeutic delivery, are protein-based NPs derived from viral capsids that have the potential to overcome the limitations of other NPs, such as particle instability, slow and nonuniform drug release, and potential immunogenicity. VLPs can be classified as: animal virus-based VLPs (e.g. human papillomavirus (HPV), hepatitis B virus (HBV)), bacteriophage-based VLPs (e.g. MS2, Qβ, P22), and plant virus-based VLPs (e.g. cowpea chlorotic mottle virus (CCMV), cowpea mosaic virus (CPMV)).
Fig. 1 Targeted delivery of VLPs (Rohovie, 2017).
Virus-like drug conjugates (VDCs) use VLP as an efficient delivery vehicle to deliver payloads such as chemotherapeutic drugs, siRNA, RNA aptamers, proteins, peptides, and fluorescent probes. Based on the ability of VLPs to selectively recognize many targets, VDCs have the potential to kill cancer cells without harming normal cells.
The advantages of VDCs:
Conjugation methods | Cargo | VLPs |
Electrostatic adsorption | RNA, DNA, Proflavin, Acridine orange | HBVc, CCMV, CPMV |
Passive encapsidation | Green fluorescent protein, Horseradish peroxidase | HBVc, CCMV, CPMV |
Genetic fusion | Nuclease, RNA, CRISPR, GFP | HBVc, MS2, P22, CCMV |
Conjugated to cysteines | Taxol, Fluorescent probes, Porphyrin | MS2, P22, CPMV |
Conjugated to tyrosines | Fluorescein | MS2 |
Conjugated to aspartates or glutamates | Doxorubicin | CPMV |
Conjugated to stem-loop RNA | Doxorubicin, Ricin toxin, HIV-1 Tat peptide, Quantum dot | MS2 |
Click chemistry | Methacrylate, Gd(DOTA) | Qβ, CCMV |
Adsorption to stem-loop RNA | Fluorescent proteins, Luciferase | Qβ |
Coordinated by genomic RNA | Gd(III), Tb(III) | CPMV |
Currently, efforts toward to stabilize VLPs, avoid phagocytes, target specific cells, escape endosome, and release cargo still need to be continued. Although VDC targeted drug delivery remains a nascent technology that requires further studies to prove its clinical efficacy, significant progress has been made. At the recently concluded 2022 ASCO Annual Meeting, a novel virus-like drug conjugate, AU-011, was disclosed to be in clinical development in combination with an immune checkpoint inhibitor for the treatment of early-stage choroidal melanoma. This combination therapy had an effect not only on primary tumors but also on distant.
Reference